Do-It-Yourself Engineering

Course No. 1144
Professor Stephen Ressler, Ph.D.
United States Military Academy, West Point
Share This Course
4.7 out of 5
77 Reviews
89% of reviewers would recommend this product
Course No. 1144
Video Streaming Included Free

What Will You Learn?

  • numbers How to think like an engineer.
  • numbers How skyscrapers, bridges, airplanes, turbines, and other engineered structures work.
  • numbers Elementary physics concepts, such as conservation of energy, Newton's laws, and Bernoulli's principle.
  • numbers How to apply high-school-level mathematics to engineering problems.
  • numbers The safe use of benchtop power tools.

Course Overview

Everyone appreciates a well-designed bridge, a sturdy skyscraper, or a flightworthy aircraft. But how many of us who aren’t engineers think, “I could build that”? In fact, you can. You may not have a professional engineer’s credentials, but you can tinker all you want in your own workshop, using readily available materials to build working models that solve all the fundamental problems of the real thing.

With a do-it-yourself spirit, combined with an engineer’s approach to problem solving, you can design and build small-scale models of practically any structure, machine, or device in today’s world. And in tackling these projects, you will gain a deeper understanding of scientific and engineering principles, a proficiency with basic algebra and trigonometry, and new strategies and skills to use in the shop—all while having fun!

So, roll up your sleeves and get started with Do-It-Yourself Engineering, 17 enthralling DIY projects in 24 half-hour lessons—from ancient catapults to modern flying machines, from a motor-powered crane to a mechanical clock. Some of the most astounding projects you’ll experience include:

  • Suspension bridge: A suspension bridge spanning eight feet requires two towers roughly five feet high. By calculating the stresses experienced by the structural system when it is fully loaded with pedestrians, you can design and build a light, strong bridge with readily available hardware.
  • Skyscraper: An ideal introduction to the engineering of tall buildings is a tower structure built with just a few sheets of cardboard, which can be fashioned into sturdy columns, beams, and braces. A properly engineered tower, three feet high, can support more than 100 pounds of bricks stacked on top!
  • Airplane: The Wright brothers built a wind tunnel to develop a wing design for their airplane. So can you, using an ordinary house fan. Your model aircraft will also need a propulsion system, three-axis stability, and a means of controlling its flight path—problems you can solve with the aid of elementary aerodynamic theory.

Your instructor is award-winning educator Stephen Ressler, a DIY addict and Professor Emeritus from the United States Military Academy at West Point, and a long-time Great Courses favorite.

A Step-by-Step Guide

Professor Ressler walks you through all the phases of each project, describing the design process, performing the construction steps on camera, and illustrating them with detailed drawings that he prepared himself, including lifelike 3D computer models. The accompanying Course Guide provides all required mathematical calculations for each design, step-by-step instructions for construction, a complete list of materials and tools, and a set of full-size templates that you can print for use in cutting out parts. Furthermore, you can go to the course website to download your own copies of the 3D computer models and other resources.

A do-it-yourselfer’s dream come true, this course will appeal not just to those who want to build challenging projects, but also anyone who wants to learn how to think like an engineer or who enjoys watching a master craftsman at work. Professor Ressler uses high-school-level algebra and trigonometry throughout the course, which he explains as he goes, so that even those whose math skills are rusty will have the tools to thoroughly enjoy every step of the process.

Do-It-Yourself Engineering was recorded in The Great Courses’ studio and on location at a modest workshop equipped with common benchtop power tools. Professor Ressler divides each project into three phases:

  • Design: Here, Dr. Ressler defines the problem, often investigating several possible solutions. Then, he selects one and develops it in detail, sketching the evolving concept on a whiteboard. This is where math enters the picture, along with physical principles such as the law of conservation of energy. These principles allow you to predict how the device will perform, even before it’s built.
  • Build: Many DIY’ers begin here, with trial-and-error tinkering that involves much wasted effort and materials. It’s crucial to have a fully developed plan first, as you learn to do in this course. For the build phase, Professor Ressler shows you how to use power and hand tools in each step, stressing safety. In these instructive segments, he is the quintessential shop teacher.
  • Test: This is the moment of truth and sometimes the occasion for creative troubleshooting to solve problems. For the sailboat, blimp, airplane, helicopter, and rocket, it is the opportunity for fine-tuning to prepare the vehicle for the next run. For the two bridges, it guarantees that the structure is safe for pedestrian traffic. For the three catapults, it means it’s time for the battle to begin!

Learn by Doing

Make! Invent! Create! These are some of the slogans of the Maker Culture, which is transforming education through its focus on exploration, self-reliance, and the joys of building things. Do-It-Yourself Engineering fits right in with this outlook. Some 2,400 years ago Aristotle wrote, “we learn by doing.” It’s still true today. Anyone can buy a fully functioning model airplane on the internet, but by designing and building one from scratch you discover what makes an airplane fly; how it ascends, descends, and turns; what keeps it stable; and what produces the dangerous phenomenon called stalling. Some of your other learning adventures in this course include:

  • Buoyancy: Buoyancy is the force that causes boats to float—even those made of concrete. It’s also the reason why a helium-filled blimp rises. In both cases, mathematics allows you to calculate the size your vessel must be to ensure that the buoyant force will support the model’s weight.
  • Torque: The rotational force known as torque plays a prominent role in the design of many engineered systems. For your model helicopter, the substantial torque generated by the main rotor must be countered by a tail rotor. Altering torque with a gear train is one way to optimize the power of a water turbine. Gear trains are also crucial to the operation of a pendulum clock and a motor-powered crane.
  • Electricity: One thrilling project you will experience is a model rocket. No less fascinating is an electric launch controller to ignite the engine. Since safety is paramount, you design a circuit with fail-safe features. Along the way, you learn about voltage, current, resistance, batteries, and how to solder. Then you launch!

The United States Military Academy at West Point, where Professor Ressler taught for 21 years before his retirement, is renowned for the rigor of its engineering programs. After immersing yourself in these 24 delightful and enlightening lessons, you’ll have no doubt that Dr. Ressler’s classes are not just rigorous, but beautifully clear and immensely enjoyable. Among his many talents is a showman’s timing, as he unforgettably demonstrates in the final lesson, a DIY engineer’s finale like no other.

Hide Full Description
24 lectures
 |  Average 33 minutes each
  • 1
    Why DIY Engineering?
    Follow the seven steps in the engineering design process to create a golf ball launcher that can hit a target ten feet away. Apply the principle of conservation of energy to select the right steel spring for the job. After building and testing the launcher, consider the joys of do-it-yourself projects and the insights they provide about fundamental engineering concepts. x
  • 2
    Exploring the Science of Structure
    Get started on DIY project number two: use cardboard to build a tower capable of supporting a 100-pound gravity load and a 10-pound lateral load simultaneously. This exercise closely replicates problems faced by real-world skyscraper designers. In this lesson, use vector math to analyze the forces exerted on each structural element of the building. x
  • 3
    Design and Build a Cardboard Tower
    Now that you understand the forces your cardboard tower must withstand, conduct a series of compressive and tensile strength experiments to determine the size and shape of your structure's beams, columns, and braces. After completing your design, build the tower using ordinary wood glue and simple tools. Then pile on concrete blocks and marvel at the strength of your creation. x
  • 4
    Bridging with Beams
    Design and build an 8-foot beam bridge capable of carrying a swarm of pedestrians across a small stream. First, consider three alternative concepts, with beams made of identical wood, but of different configurations. Then develop these designs, analyzing their stresses and failure modes before selecting the optimum, building it, and inviting your friends onto the span. x
  • 5
    Make a Suspension Bridge
    Elegant and efficient, the suspension bridge is your next DIY effort. Span the same small stream as in the previous project, but support the deck with suspension cables draped between two 5-foot-tall towers. Analyze the flow of forces through the structural system before designing each element. A 3D computer model helps you plan this impressive project. x
  • 6
    Design a Concrete Sailboat
    It may sound suspiciously like a lead balloon, but a concrete boat can be made to float. Your engineering challenge is to create a concrete sailboat that can operate safely in 10-mph winds. Hydrostatics comes into play in designing a hull with sufficient buoyancy, and aerodynamics enters the picture in designing a sail that doesn't cause too much heeling in the wind. x
  • 7
    Set Sail!
    Build your concrete sailboat. Consider the enhanced strength of a concrete shell that has been formed into a curved shape—a feature exploited in many buildings. Then apply basic aerodynamics and vector mechanics to determine how the wind propels a sailboat—sailing with the wind, into the wind, and at right angles to the wind. Try out these points of sail with your model. x
  • 8
    Make a Radio-Controlled Blimp
    Who has not tied a paper cup to a helium party balloon to make a primitive airship? In this lesson, design and build a far more advanced version: a radio-controlled blimp that you can remotely pilot around your house. Calculate the volume of helium required to lift your blimp and its control unit, borrowed from a toy tank. Use two motor-driven propellers for thrust and control. x
  • 9
    Exploring Aerodynamics
    Start your project on fixed-wing flight the way the Wright brothers did: by building a wind tunnel. Use it to test different wing shapes at varying angles of attack, exploring the phenomena of lift, drag, and stalling. Your goal is to design a wing appropriate for a low-speed model plane, powered only by a few strands of rubber and flying without remote control. x
  • 10
    Build a Model Airplane
    Dig deeper into aerodynamic science so you can choose an airfoil shape and appropriate wingspan, aspect ratio, fuselage length, and stabilizer dimensions for your model plane. Pay special attention to aerodynamic stability and such factors as the dihedral angle of the wings, noting these features on full-size aircraft. Then build the airframe, using wood, tissue paper, and metal wire. x
  • 11
    Take Flight!
    Complete your model plane by assembling a rubber motor that will serve as a source of power. Design, carve, and install an efficient propeller. Learn how to balance your aircraft and adjust its flight characteristics. Then find a large, open field, and try a few test glides to fine-tune the plane's performance. Finally, watch it take wing on a full-power flight. x
  • 12
    Build a Model Helicopter
    Now tinker with helicopter aerodynamics by adapting the classic Penni model helicopter design used by many hobbyists. Discover the importance of countering the main rotor’s torque, and investigate the mechanical genius of the rotor hub—fortunately simpler on our model than on full-size aircraft! With its 16-inch main rotor, your super-light helicopter can safely fly indoors. x
  • 13
    This Is Rocket Science
    Tackle the problem of designing a model rocket that carries a miniature video camera to 500 feet and then returns safely to earth by parachute. In this lesson, focus on selecting an off-the-shelf model rocket engine that can do the job. Use the impulse-momentum principle and thrust curves for various engines to predict your rocket's maximum altitude. x
  • 14
    Build a Rocket
    Put together your model rocket, paying special attention to the engine mount and fins, then giving the completed vehicle a drag-reducing finish. Apply the science of aerodynamics to calculate the required diameter of the parachute. Then check the rocket's stability by determining its center of gravity and center of pressure locations. Your creation is now ready to fly. x
  • 15
    Make an Electric Launch Controller
    Get a taste of electrical engineering by designing and building an electric launch controller that will ignite your rocket engine safely. Design a circuit that meets all code requirements. Use Ohm's law to determine the number of batteries and type of resistor required. Also, get a lesson in proper soldering technique for assembling the circuit. x
  • 16
    Let's Do Launch!
    Finish your launch preparations by building a theodolite to measure the altitude of the rocket's trajectory, building a launch pad, packing the parachute, choosing a safe launch site, setting up the site, and coordinating the activities of the mission control team. Once all systems are go, conduct the countdown and press the firing button... x
  • 17
    A Tale of Three Catapults
    Delve into the history of the most potent artillery weapons in the era before gunpowder: catapults. Examine the workings of the ballista, onager, and trebuchet. Then get started on a model ballista capable of hurling a golf ball 200 feet. Analyze the machine's nylon torsion springs to ensure that they can store enough elastic energy to achieve the required 200-foot range. x
  • 18
    Build a Ballista, Onager, and Trebuchet
    Build your model ballista. Then construct two other types of catapult—the onager and trebuchet—designed such that they store the same amount of energy as your ballista. Field test all three to determine which throws a golf ball farthest. Will the winner be the weapon from the Hellenistic (ballista), late Roman (onager), or medieval era (trebuchet)? You may be surprised! x
  • 19
    Design a Hydraulic Arm
    Plunge into hydraulics, learning how force is transmitted from actuators to hydraulic cylinders through fluid-filled lines. Then use this knowledge to design and build a hydraulically powered mechanical arm that can grasp and manipulate a concrete block—controlled by four hand-operated syringes. Along the way, use 3D printing to fabricate several crucial parts. x
  • 20
    Make a Water Turbine
    Harness the power of moving water by building an impulse turbine capable of lifting a 2.2-pound weight through a distance of 2 feet. First, use Bernoulli's equation to determine the required height of the water reservoir. Next, focus on the turbine, plotting power versus load to determine the turbine diameter that will produce the required power output optimally. Then build! x
  • 21
    Design a Gear Train
    Test your water turbine, comparing its performance to the theoretical ideal. Next, modify it by adding a set of spur gears that will allow the machine to lift a 6-pound weight, which is well beyond its ungeared capacity. Calculate the optimum gear ratio, use laser-cutting to fabricate the gears, install them, and watch a modest stream of water lift a disproportionately heavy mass. x
  • 22
    Make a Mechanical Clock
    The pendulum clock was the standard for precise timekeeping for centuries. Plan and build one using your newly acquired knowledge of gears. Start by exploring why a pendulum keeps accurate time. Then calculate an appropriate pendulum length for the clock. Design the escapement mechanism and gear train, then add a suitable power source to keep the pendulum swinging. x
  • 23
    Design a Motor-Powered Crane
    Test the limits of small, inexpensive, off-the-shelf hobby motors by building a motor-driven crane capable of lifting 100 pounds—a tall order for a motor that weighs only a few ounces! First, construct the world’s simplest electric motor to gain insights about how they work. Then calculate the torque requirements for your crane, and add gears and pulleys to achieve mechanical advantage. x
  • 24
    Creative Design: A Tribute to Rube Goldberg
    Your final DIY project is a tribute to cartoonist Rube Goldberg, famous for sketching machines that perform the simplest tasks by the most complicated means. Accordingly, combine twenty design elements from this course—from airfoil to electric circuit—to create a machine that will click a computer mouse. Professor Ressler offers a solution that produces a surprising outcome. x

Lecture Titles

Clone Content from Your Professor tab

What's Included

What Does Each Format Include?

Video DVD
Instant Video Includes:
  • Download 24 video lectures to your computer or mobile app
  • Downloadable PDF of the course guidebook
  • FREE video streaming of the course from our website and mobile apps
Video DVD
DVD Includes:
  • 24 lectures on 4 DVDs
  • 353-page printed course guidebook
  • Downloadable PDF of the course guidebook
  • FREE video streaming of the course from our website and mobile apps
  • Closed captioning available

What Does The Course Guidebook Include?

Video DVD
Course Guidebook Details:
  • 353-page printed course guidebook
  • Project guides
  • Supplemental materials
  • Material lists

Enjoy This Course On-the-Go with Our Mobile Apps!*

  • App store App store iPhone + iPad
  • Google Play Google Play Android Devices
  • Kindle Fire Kindle Fire Kindle Fire Tablet + Firephone
*Courses can be streamed from anywhere you have an internet connection. Standard carrier data rates may apply in areas that do not have wifi connections pursuant to your carrier contract.

Your professor

Stephen Ressler

About Your Professor

Stephen Ressler, Ph.D.
United States Military Academy, West Point
Dr. Stephen Ressler is Professor Emeritus from the United States Military Academy at West Point and a Distinguished Member of the American Society of Civil Engineers (ASCE). A registered Professional Engineer in Virginia, he earned a B.S. from West Point and an M.S. and a Ph.D. in Civil Engineering from Lehigh University, as well as a Master of Strategic Studies from the U.S. Army War College. Professor Ressler's papers on...
Learn More About This Professor
Also By This Professor


Do-It-Yourself Engineering is rated 4.6 out of 5 by 75.
Rated 5 out of 5 by from Very fun and informative I watched the lectures, but did not build any of the projects. Overall I was impresed. I think there was a little to much complex math for my age (15 yrs), but I still enjoyed it.
Date published: 2020-01-20
Rated 5 out of 5 by from Combines learning with hands on, its great I am very happy with instructions,learning,and projects.
Date published: 2019-12-24
Rated 5 out of 5 by from I ordered too soon. The week that my course, I got an offer for the same course at half the cost. Bummer, but I'm keeping my copy. It will be great for my grandson and I to build projects. He wants to be an engineer.
Date published: 2019-12-17
Rated 5 out of 5 by from The Clock was a challenge ...but well worth it. The Clock was a challenge…but well worth it! In reading the reviews regarding this DIY course, I felt I should respond to the most recent client review, “the clock was a big disappointment” First let me say I fully empathize with this person because none of us enjoy tackling a job which turns out to be total frustration. (not sure whether this a male or female so I will call it a him). However, somewhere I recall Dr. Ressler saying something to the effect “not for the faint of heart.” Like this gentleman who wrote, I too am a woodworker who have built many complex pieces of furniture, so assumed most of these projects would be a breeze. They all turned out to be a bit more of a challenge than I anticipated. I started with the golf launcher and went from there, telling myself I could never do the clock since it looked too complex for me. After a year of working on most of the other projects in the course, I was primed and ready to tackle the clock. This clock was the final piece that I built, knowing it would be the most difficult of the other ones in the course. When I first contemplated any of the projects I noticed in the “DIY Engineering Resources Web Page that Dr. Ressler offers to answer customers’ questions. He then provides his contact information. Contacting him via email and thereafter working with him was absolutely a pleasure but also essential in order for me to complete the clock as well as most other projects in the ‘Course Workbook.’ Dr. Ressler was so gracious and most helpful each and every time I ran into a snag. The clock operates very well just as advertised. It is currently sitting on a special shelf in our family room. Ponoko was great to work with. I had used them previously on a project so was a little familiar with their protocol. They consistantly produce high quality laser-cut parts. Of course I made mistakes working through this, which necessitated my re-ordering more parts from Ponoko. This was my doing so knew I would need to pay for my mistakes if a completed clock was the goal here. But here again, I asked Dr. Ressler and he guided me through the process of Ponoko’s way of doing things. In closing let me say I am a huge Great Courses fan. I am now in my 3rd or 4th viewing of Dr. Ressler’s three other courses that I had purchased before buying this one, ( Everyday Engineering, World’s Greatest Structures, and Understanding Greek and Roman Technology). It is hard for me to comprehend the large amount of work that he put into all of his courses but especially The DIY Course.
Date published: 2019-09-24
Rated 2 out of 5 by from The clock was a big disappointment The first thing I decided to try was the wooden clock. I have pretty good shop skills. I received the parts and during assembly one of the gears and the 'drum' had enough wobbel that the clock won't work (and I followed the instructions exactly). The best way to fix the clock is get replacement gears (I only need a very few of the parts). All I'm getting from Pokono (the people that make the laser cut parts) is one giant run around. I do not have, nor am I going to purchase Sketchup Pro to edit this file. So basically this is several hundred dollars flushed down the toilet.
Date published: 2019-09-18
Rated 5 out of 5 by from Educational I completed this course 2 months ago. Each lesson was interesting and was well presented. I liked the lesson models and the testing of each model, very realistic.
Date published: 2019-07-05
Rated 5 out of 5 by from Terrific Really good teaching is a rare thing but he has it. Naturally this course alone can not make a person an engineer in the full sense, but it covers the conceptual basics very well given the time allotted, and opens the door for the easier projects most people could tackle on there own. It is truly a gem!
Date published: 2019-06-16
Rated 5 out of 5 by from Awesome Course!!! This course is so much fun, it makes me feel like a kid again! It provides some excellent practical knowledge in relating mathematics to practical engineering projects. The Professor seems so enthusiastic that you never want the course to end. Hopefully he will come out with a Part 2!
Date published: 2019-04-16
Rated 5 out of 5 by from Fun to watch even if you never build anything I knew before taking this course that I didn't have the equipment, skills, or ambition to actually construct the models that Dr. Ressler would be building. I thought that it would still be fun to watch how he does it, and as an engineer, seeing him apply basic engineering principles to do-it-yourself projects was interesting. Having seen him in his workshop in this course, I came to appreciate that the many models and teaching demos he uses in his other Great Courses lectures were of his own construction; very impressive. So, if like me you don't expect to actually build any of these models, you may still enjoy seeing how he does it and learn a few things along the way.
Date published: 2019-03-14
Rated 5 out of 5 by from Food for thought: A.K.A. Growth thru experience. I have a grandchild that is two years old as of this review. I see myself running through the different projects in this course a few years into the future and helping him to grow beyond “easy curriculum” or “technological assistance.” We will do these projects step by step and by the numbers. Through this approach via “old school” practical application, he will learn skills that will set him apart; he will have learned real world skills verses computer assisted nursing. If you take technology away he will have a skill set beyond his peers which started with the fundamentals and setting his mind alight with wonder.
Date published: 2019-02-18
Rated 5 out of 5 by from Although I am not an engineer, I surely enjoyed the intricacies of enginnering, Professor Ressler is excellent and precise presenting the various problems. Thanks!
Date published: 2019-02-14
Rated 5 out of 5 by from Do-It-Yourself Engineering This course is everything I hoped it to be. The instructor provided clear and meaningful content that made the science of the projects enjoyable and fun.
Date published: 2019-02-08
Rated 5 out of 5 by from Do-it-Yourself Engineering Great course. A good combination of basic engineering with practical examples. The last lecture was great!
Date published: 2019-02-02
Rated 4 out of 5 by from Fitness and aging So far I am enjoying it very much. I have always exercised but I am learn a lot from these lectures. Brian
Date published: 2019-01-28
Rated 2 out of 5 by from Purchased for my Grandson I bought this as a gift for my grandson for Christmas. He received the class promptly but I was not notified as stated in their literature that he had received and opened the class. Moreover there is supposed to be a reference book that goes with the class which he has not seen. Not sure I will do business with these people again. Not a function of the class which he seems to think is ok. (He loves engineering and science) Just a function of this buyer experience and past experience with them with other classes I bought. In those cases, there were additional charges not identified in the literature.
Date published: 2019-01-01
Rated 5 out of 5 by from Very interesting and fun course! I highly recommend this course. I studied engineering 20 years ago and it reminded me of my university courses, except this is better because of the applications.
Date published: 2018-12-19
Rated 5 out of 5 by from Very Clear Instruction about Real Applications ! The Lecturer sets out to implement various projects and along the way explains the basic engineering principles that apply. These 'asides' are a great way to teach. I shall be on the look-out for Prof. Ressler's future courses.
Date published: 2018-12-18
Rated 4 out of 5 by from Enjoyed this I had great fun with this course, but I realised very quickly that I was not going to make any of the projects. I believe something in the writeup did say that it was good to have had experience with power tools, but I was not prepared for the range of materials that were required (and the expense - though I believe part of the requirements for the first one included an expense limit). That said, everything else about the experience was positive. If you chose to stop and pay attention, you could learn a lot of math and science; and if you weren't in the mood, you could simply appreciate how things are put together. The professor's enthusiasm was infectious and I always looked forward to the next lecture.
Date published: 2018-12-16
Rated 1 out of 5 by from Books not received No books arrived to support videos as promised in catalog
Date published: 2018-10-07
Rated 4 out of 5 by from Do-It-Yourself Engineering I am creating kits for two twelve year olds who love to tinker with Lego kits. This is the next step for them, I think. The math is way too intricate for the boys but the material lists are great. Will let you know how this adventure turns out!
Date published: 2018-08-03
Rated 5 out of 5 by from Another winner from Professor Ressler I enjoyed the easy going approach to everyday engineering. Learning through doing is always the best for me.
Date published: 2018-07-18
Rated 1 out of 5 by from Great features! I bought this a month ago and I'm so happy I did...
Date published: 2018-07-18
Rated 5 out of 5 by from Highly Recommended First of all: Dr Ressler is my favorite lecturer. His enthusiasm for his subject is surpassed only by his expertise. He presents his subject material in clear, logical and easy-to-follow steps. What I liked most about this course was the elimination of guess work. Even when confronted with unknown characteristics of materials or structures, he shows us how to determine those things by intelligent testing. Each project begins with requirements and constraints. And the requirements are pretty specific. Finally, the raison d’etre of the course: he shows how to employ the laws of physics and the rules of engineering to create the projects in a straight-line, least-expensive route. The projects were also just plain fun. Highly recommended!
Date published: 2018-06-19
Rated 5 out of 5 by from Wonderful course! Absolutely a great course. The instructor is the best. Graphics and demos are outstanding. Course content is valuable to just about anyone interested in engineer. As a side benefit, you learn a lot of woodworking. Terrific job by all..
Date published: 2018-06-12
Rated 1 out of 5 by from Not real engineering again! I cannot deny that Professor Ressler is good, but I would have wanted that at least this course would be a real engineering course. Again, this is supposed to be like an engineering lab course without higher university level math. There are already so many physics and engineering courses from the great courses without much use of higher math, the kind of courses you get if you graduate with a degree in physics or engineering. I understand that the great courses wants to sell the most courses possible and is trying to reach mass audience. However, there are I believe many people like me who would also like courses that are truly engineering and physics university courses which use calculus/ linear algebra/differential equations/probability theory, etc. Why not ALSO release courses like that?
Date published: 2018-06-07
Rated 5 out of 5 by from Whole family loves it! The whole family, from age 7 on up, have enjoyed this series and learned so much from it. We are constantly amazed at what Dr. Ressler creates. We hope to build some of them ourselves someday!
Date published: 2018-06-01
Rated 5 out of 5 by from Anything by Ressler is great! another item for a grandkid, he is headed to Senior Year H.S. and needs some military teaching. I loved it when his dad returned from the Marines so the Army Engineer will impart some much needed discipline even in a DVD for civilians.
Date published: 2018-05-17
Rated 5 out of 5 by from And educational as well I love the course not only for the instructional handy work but also for the science brought to it
Date published: 2018-05-10
Rated 5 out of 5 by from Accurate Description of the course material. The projects covered in the course were very good choices for demonstrating different applications of engineering science. The demonstration of the mathematics behind each project was particularly interesting and the end result is that a lot of useful information is portrayed along with techniques for the do-it-yourselfer to apply in future experiments and projects. Being able to test materials via the methods and devices used in the course is great.
Date published: 2018-05-09
Rated 5 out of 5 by from For DIY hobbyists and non-hobbyists alike. Having watched Professor Ressler's other three Great Courses on ancient technology, everyday engineering and the world's greatest structures, I was delighted to see this new release. Although, I'm not a DIY hobbyist, nor have a workshop with tools, so, at the outset, whilst excited, I didn't believe I would enjoy this as much as his other three courses. How wrong was I! Whereas the other three courses teach you to think like a philosopher of engineering: to observe, to ponder, to understand, this one teaches you to act like a practitioner: to create, to calculate, to do. He has carefully chosen each of his projects to practically demonstrate certain key principles with regard to a particular field or combination of fields of engineering, examples include; structural, nautical, aeronautical, ballistics, mechanical, electrical, hydraulics, to name but a few. But how this differs from Professor Ressler's other three Great Courses is that you will watch him create each project from scratch. He identifies his design requirements and constraints, and then draws the plan, with his specifications and templates provided in his comprehensive guidebook, and then, and this is the really fun part, he shows you, in his own workshop, with sleeves rolled up, how to gather these materials together, address them, craft them, using his bare hands and tools to input the energy required to transform these raw materials into a concrete sailboat, or a flying airplane, or a hydraulic arm, demonstrating handcraft techniques whilst simultaneously describing the engineering principles being applied to each creation using scientific and mathematical equations, graphs and diagrams. There is so much scientific knowledge to absorb, and it is all practical, essential to the success of each creation. ...And then you arrive at the final lecture, the Goldbergian tribute, tying all the previous parts of the course together into a holistic and hilarious conclusion. Brilliant! In my opinion, this course is a joy to watch and to learn so much from, regardless of whether one intends to carry out these projects, individually, or as a family.
Date published: 2018-04-21
  • y_2020, m_9, d_21, h_15
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.12
  • cp_2, bvpage2n
  • co_hasreviews, tv_5, tr_70
  • loc_en_US, sid_1144, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.0
  • CLOUD, getContent, 28.25ms

Questions & Answers

Customers Who Bought This Course Also Bought