The Theory of Everything: The Quest to Explain All Reality

Course No. 1318
Professor Don Lincoln, Ph.D.
Fermi National Accelerator Laboratory (Fermilab)
Share This Course
4.6 out of 5
152 Reviews
83% of reviewers would recommend this product
Course No. 1318
Video Streaming Included Free

What Will You Learn?

  • Discover the unifying theories in classical physics: Newton and Maxwell.
  • Examine the basics of Einstein's special and general relativity.
  • Delve into other pieces of the puzzle, including the Higgs boson and dark energy.
  • Uncover major theories in the quantum revolution.
  • Explore the current standard model of particle physics.
  • Consider the problems between the standard model and general relativity.

Course Overview

The great theories of physics are like great works of art. And much like the greatest works of art, you don’t need to completely understand them in order to appreciate them. The unifying theories of physics are among the greatest and most complex in all of science; they stand as incomparable masterpieces in the gallery of modern thought. As you experience them, you will witness their progression toward ever-grander insights, pointing towards an as-yet-unfinished ultimate synthesis that will transform our understanding of the universe. Anyone, no matter what their training in science and mathematics, can appreciate this quest, which is nothing less than a search for the theory of everything.

The theory of everything will ultimately be single equation that explains all physical reality. The definitive formulation of this holy grail of physics still eludes researchers, but it is a dream with a long history, spawning such revolutionary ideas as:

  • Newton’s law of universal gravitation: In the 17th century, Isaac Newton launched a scientific revolution by showing that the force that makes objects fall is also the force that keeps the Moon and planets in their orbits—what we now call gravity.
  • A unified theory of electromagnetism: In the 19th century, James Clerk Maxwell worked out equations that link two seemingly distinct phenomena—electricity and magnetism—and also predict the existence of electromagnetic waves.
  • Einstein’s general theory of relativity: Starting with the premise that inertial and gravitational mass are equivalent, Albert Einstein made the astonishing discovery that gravity is the bending of space and time caused by mass and energy.
  • The standard model of elementary particles and forces: In the early 20th century, scientists investigated perplexing phenomena, including radiation and the spectrum of light emitted by atoms. Their investigations uncovered new forces and lead to a series of theories that explain the quantum realm.
  • Other cutting-edge concepts: The continuing search for the theory of everything has also produced superstring theory, supersymmetry, cosmic inflation, loop quantum gravity, dark matter, dark energy, the Higgs field, multiple universes, and more.

The Theory of Everything: The Quest to Explain All Reality opens your eyes to this astounding project in 24 half-hour lectures that are suitable for inquisitive minds at all levels. Your guide, Don Lincoln, Senior Scientist at Fermi National Accelerator Laboratory (Fermilab) and Guest Professor of High Energy Physics at the University of Notre Dame, relishes conveying the thrill of physics to a variety of audiences, so no background beyond basic high-school mathematics is needed to follow this exciting odyssey.

Supported by scores of helpful diagrams, charts, and animations, as well as years of experience as a science writer and educator for the general public via books, blogs and YouTube, Dr. Lincoln makes the most abstract ideas in physics accessible, explaining the interactions behind everything that happens in the cosmos in terms of matter particles, their different characteristics, and the force-carrying particles that are exchanged between them.

A Thrilling First-Hand Report

It only makes sense to start The Theory of Everything by looking at what such a theory entails. After briefly reviewing the standard model of particle physics and general relativity—which are our two best prototypes for a theory of everything, though both fall short—you spend the next few lectures tracing how we got to this point. Along the way, you bridge the classical and modern eras of physics, working your way from moving electric charges, fluctuating magnetic fields, and classical electromagnetism, to the exotic concepts of quantum electrodynamics, the electroweak force, strong force “color” and quantum chromodynamics, neutrinos, and supersymmetric particles.

Then you take a parallel journey through gravity, from Newton’s universal theory of gravitation uniting classical mechanics and celestial motion; to Einstein’s general relativity uniting gravity, time, and space; and then to the even more exotic concepts of dark matter, dark energy, quantum gravity, extra dimensions, and the multiverse.

In each case, new theories spawned new experiments, which led to new observations—often of particles that needed to be accounted for by entirely new theories.

For more than three decades, Dr. Lincoln has been at the forefront of this quest as a physicist designing and evaluating experiments using high-energy particle accelerators. He was on the teams that made two breakthrough discoveries: the top quark in 1995 and the Higgs boson in 2012. His hands-on experience and down-to-earth gift for clear explanations and insightful analogies make this course a thrilling first-hand report from the frontlines of one of the most significant scientific efforts of our time.

A Breathtaking Trip

Among his other talents, Dr. Lincoln is skilled at conveying the beauty of mathematics to novices. While some may believe the theories of physics can’t be appreciated without understanding the mathematics, Dr. Lincoln gives you a solid grounding in what the equations say, conducting you through the Greek letters and strange symbols, explaining what they mean and how these formulas make remarkable statements about the nature of the physical world.

As he says in one lecture, “We’ll walk right up to the precipice of a full-blown calculation, but then we’ll step back before we get mired in the mathematical details.” It’s a breathtaking trip, addressing such topics as:

  • Is the universe mathematical? Physicist Eugene Wigner wrote a famous paper puzzling over what he called the “unreasonable effectiveness of mathematics.” Dr. Lincoln provides an insider’s perspective on how physicists use math to unlock experimental results and why he considers it so amazingly successful at predicting nature.
  • Feynman diagrams: A particle physics tool that anyone can understand is the Feynman diagram, a form of doodle invented by physicist Richard Feynman. Dr. Lincoln demonstrates that these deceptively simple drawings of particle interactions are actually equations in disguise, and he describes how they revolutionized his field.
  • Symmetry everywhere: In 1915, mathematician Emmy Noether proved that conservation laws in physics are connected to the symmetry properties of nature. Dr. Lincoln shows how extensive symmetry is, stressing its importance to unified theories and highlighting a proposed theory of everything called supersymmetry.
  • Limitations of general relativity: Spectacularly successful at the planetary and cosmic scales— and even describing the warped space around black holes—the equations of general relativity break down at the quantum level. Dr. Lincoln gives a simple mathematical reason for why this is the case, illustrating the daunting challenge faced by physicists trying to devise a theory of everything.

In his last lecture, Dr. Lincoln synthesizes our current understanding by presenting a single equation that covers everything that is known to be true in fundamental physics, including special relativity, quantum mechanics, the standard model, and general relativity. By the end of the course, you’ll have touched on nearly all the major theories of physics, and will have a thorough understanding of our most current knowledge about reality.

“There are so many clues staring at us in the face,” Dr. Lincoln says of the many possible paths forward. “They are telling us something profound. Somebody will one day have the crucial idea.” To experience this course, is to understand first-hand the thrilling unifications of reality physicists have already achieved, the promise of a Theory of Everything, and clues about what wonders lie just beyond the horizon.

Hide Full Description
24 lectures
 |  Average 31 minutes each
  • 1
    Two Prototype Theories of Everything
    Embark with Dr. Lincoln on a search for a theory of everything-a simple and comprehensive explanation for all physical phenomena in the universe. Confront the incompatibility of our two best prototypes: the standard model of particle physics and the general theory of relativity. x
  • 2
    The Union of Electricity and Magnetism
    Learn how two seemingly separate phenomena, electricity and magnetism, were shown by James Clerk Maxwell in the 1860s to be aspects of a single underlying force, demonstrating how unification works in physics. Then see how Maxwell's equations of electromagnetism make a remarkable prediction. x
  • 3
    Particles and Waves: The Quantum World
    Follow one of the strangest turns in modern science: the discovery of the paradoxical world of light, which spawned the theory of quantum mechanics. Discover how light and matter behave as both particles and waves, and look at evidence for this curious feature of the quantum world. x
  • 4
    Einstein Unifies Space, Time, and Light
    Trace the reasoning that led Einstein to his special theory of relativity, proposed in 1905. Address common misconceptions about this startling new view of time and space, which led to ideas such as mass-energy equivalence, the impossibility of faster-than-light travel, and the space-time continuum. x
  • 5
    Relativistic Quantum Fields and Feynman
    Take a deeper step into the quantum world, observing how the theory of quantum electrodynamics, or QED, unites quantum mechanics with special relativity. Discover that the handy sketches of subatomic behavior called Feynman diagrams (named after physicist Richard Feynman) are really equations in disguise. x
  • 6
    Neutrinos Violating Parity and the Weak Force
    Study the weak nuclear force, which is responsible for beta decay: the emission of an electron from a nucleus during radioactive decay. Discover that much more is going on, including weird transformations that pose a challenge to a theory of everything. x
  • 7
    Flavor Changes via the Weak Force
    Analyze more idiosyncrasies of the weak force, focusing on the three massive particles that mediate its interactions. Discover that the weak force is unique in its ability to change a characteristic called flavor, and learn that at high energies the weak force is exceptionally strong. x
  • 8
    Electroweak Unification via the Higgs Field
    A key step in the quest for a theory of everything has been the realization that the electromagnetic and weak forces are aspects of the same force. Follow the saga of electroweak unification, which culminated in the discovery of the Higgs boson in 2012. x
  • 9
    Quarks, Color, and the Strong Force
    Explore the force that helps hold the atomic nucleus together, called the strong force. Chart the discovery of this mysterious mechanism-which only works at extremely short range-and see how it led to concepts such as quarks, gluons, and the color force, which is responsible for the strong interaction. x
  • 10
    Standard Model Triumphs and Challenges
    Bring together all the concepts studied so far to gauge how close physicists are to a theory of everything. Focus on the shortcomings of the standard model. Then zero in on two burning questions: Why is the mass of the Higgs boson so low, and why does matter predominate over antimatter? x
  • 11
    How Neutrino Identity Oscillates
    Transition to a new perspective as Professor Lincoln spotlights speculative ideas that may contribute to a theory of everything. In this lecture, explore the mysteries of neutrinos, which are extraordinarily hard to detect yet hold intriguing clues about the possible unity of fundamental forces. x
  • 12
    Conservation Laws and Symmetry: Emmy Noether
    Consider why mathematics is such an effective tool for describing nature. Then focus on mathematician Emmy Noether's remarkable insight that links symmetries in the equations of a physical system to conservation laws, such as the conservation of energy and conservation of momentum. x
  • 13
    Theoretical Symmetries and Mathematics
    The first inklings of a successful theory of everything will probably arise from symmetries and group theory. Prepare for this epochal moment by digging into these important mathematical ideas. Also, learn to approach proposed theories of everything with fascination, tinged with healthy skepticism. x
  • 14
    Balancing Force and Matter: Supersymmetry
    One of the most attractive ideas for physicists searching for a theory of everything is supersymmetry, which treats force- and matter-carrying particles as interchangeable. Explore major problems that supersymmetry solves and the shortcomings that convince some scientists that perhaps some other ideas must also be considered. x
  • 15
    Why Quarks and Leptons?
    The fundamental building blocks of matter are thought to be quarks (which interact by the strong force) and leptons (which interact by the electromagnetic and weak forces). But could there be a deeper level? Explore the theory of preons, which may be even more fundamental than quarks and leptons. x
  • 16
    Newton's Gravity Unifies Earth and Sky
    Gravity is by far the weakest of the fundamental forces. Learn how Newton achieved the first major unification in physics by showing that terrestrial and celestial gravity are the same. He also tacitly equated inertial mass and gravitational mass, leading to the startling theory 250 years later. x
  • 17
    Einstein's Gravity Bends Space-Time
    Built on the equivalence of inertial and gravitational mass, Einstein's general theory of relativity explains gravity in a surprising new way. See how matter and energy determine the shape of space and time. Investigate confirming evidence for general relativity, including the discovery of gravitational waves in 2015. x
  • 18
    What Holds Each Galaxy Together: Dark Matter
    Trace the discovery of missing mass surrounding most galaxies, which leads scientists to infer that 85% of all matter is "dark" and can't be observed directly. Evaluate the major theories about this discrepancy, and consider its implications for a theory of everything. x
  • 19
    What Pushes the Universe Apart: Dark Energy
    Turn to dark energy, the ghostly energy field that appears to be pushing the universe apart at an ever-greater rate. Learn how this extraordinary discovery was made in 1998, and explore theories that attempt to explain dark energy and its strange consequences. x
  • 20
    Quantum Gravity: Einstein, Strings, and Loops
    A theory of everything must fit gravity into the quantum realm, reconciling the general theory of relativity with the standard model of particle physics. Explore the features of gravity that make this unification so difficult, and evaluate two intriguing approaches: superstring theory and loop quantum gravity. x
  • 21
    From Weak Gravity to Extra Dimensions
    Venture into extra dimensions to investigate gravity's extraordinary weakness compared to the other fundamental forces. This journey also sheds light on the possible creation of subatomic black holes in particle accelerators and why tiny black holes pose no risk to humanity. x
  • 22
    Big Bang and Inflation Explain Our Universe
    Starting with the big bang, plot the history of our universe, focusing on events in the tiniest fraction of the first second, when phenomena such as supersymmetry, superstrings, and quantum loops may have come into play. Consider the explanatory power of the theory of cosmic inflation. x
  • 23
    Free Parameters and Other Universes
    Now step into the realm of other universes. Do they exist? If so, how could we possibly know? Start by examining the free parameters that govern the structure and behavior of our universe. Then seek answers to four crucial questions that address why the parameters take the values that they do. x
  • 24
    Toward a Final Theory of Everything
    Finish the course by reviewing unified theories since Newton, analyzing a remarkable equation that brings major insights together and represents the current status of a theory of everything. Then look ahead to the next steps, and hear Dr. Lincoln's own research agenda for this momentous quest. x

Lecture Titles

Clone Content from Your Professor tab

What's Included

What Does Each Format Include?

Video DVD
Video Download Includes:
  • Downloadable PDF of the course guidebook
  • Download 24 video lectures to your computer or mobile app
Video DVD
DVD Includes:
  • 24 lectures on 4 DVDs
  • 248-page printed course guidebook
  • Downloadable PDF of the course guidebook
  • FREE video streaming of the course from our website and mobile apps
  • Closed captioning available

What Does The Course Guidebook Include?

Video DVD
Course Guidebook Details:
  • 248-page printed course guidebook
  • Photos, illustrations, and tables
  • Suggested reading
  • Questions to consider

Enjoy This Course On-the-Go with Our Mobile Apps!*

  • App store App store iPhone + iPad
  • Google Play Google Play Android Devices
  • Kindle Fire Kindle Fire Kindle Fire Tablet + Firephone
*Courses can be streamed from anywhere you have an internet connection. Standard carrier data rates may apply in areas that do not have wifi connections pursuant to your carrier contract.

Your professor

Don Lincoln

About Your Professor

Don Lincoln, Ph.D.
Fermi National Accelerator Laboratory (Fermilab)
Don Lincoln is a Senior Scientist at Fermi National Accelerator Laboratory (Fermilab). He is also a Guest Professor of High Energy Physics at the University of Notre Dame. He received his Ph.D. in Experimental Particle Physics from Rice University. Dr. Lincoln’s research has been divided between Fermilab’s Tevatron Collider, until its close in 2011, and the CERN Large Hadron Collider, located outside Geneva,...
Learn More About This Professor
Also By This Professor

Reviews

The Theory of Everything: The Quest to Explain All Reality is rated 4.5 out of 5 by 151.
Rated 5 out of 5 by from Excellent topics Dr. Lincoln is excellent at explaining difficult concepts in layman's vocabulary. He is methodical in his delivery. I am able to understand what he is attempting to convey through this course.
Date published: 2019-06-11
Rated 5 out of 5 by from The power of simplicity You should have some background in physics, chemistry and math but you need not be a subject major; Don Lincoln's easy going demeanor belies his measured yet thorough approach to a difficult subject. Anyone interested in the pursuit of the origins of everything will appreciate this wonderful course.
Date published: 2019-05-31
Rated 5 out of 5 by from Amazing and Understandings for All I was worried I wouldn't understand this course, and I'd have to return it like, "The Four Laws of Thermodynamics." That is not the case. I have watched a few lectures and am all giddy and happy afterwards with, "The Theory of Everything." The material is structured like an onion: something for everyone. I saw in the reviews people think he talks too fast, but he is able to pace himself and peel through the layers of understanding while still being engaging to his audience. Thank you, thank you, thank you!
Date published: 2019-05-31
Rated 5 out of 5 by from A great follow-on to my other Physics courses Previous courses included, 2 by Prof Sean Carrol, 2 by Prof Schumacher, and one by Prof Joshua Winn. This course included and integrated material from the other 5 courses. I especially liked the last few lectures that covered some of the most recent ideas, speculations, and research paths. Prof Lincoln is a superb and entertaining lecturer.
Date published: 2019-05-27
Rated 4 out of 5 by from Great Subject But... Who doesn't want to know the theory of everything? It is very interesting...This is the proverbial "Rocket Science" as far as the complexity of the subject. So the course lacks two things: 1) A glossary. How can one teach a subject this technically involved without an extensive glossary in the back of the course book?; and 2) The teacher, who obviously is very knowledgeable, speaks too fast for a technical course like this. This is not a mythology course for example where his pace would be just fine. Be prepared to read every chapter before you watch the video. If you are not willing to do this I would think about passing on this course. I just can't imagine absorbing the lecture's of this complexity given he is speaking as fast as he does if you do not read the chapter's fast. Even if you do, it is not a cake-walk and you will need to do some googling to get clarification on the lectures (again a glossary and more charts and visual's in the course book would help immensely). So I am enjoying the course, and do recommend it with the caveat's and condition's above. I give it a 4 instead of 5 because of the shortfalls in the course book and the instructor's speaking speed (which is too fast for the subject matter). I am an Electrical-Engineer by the way, so I have a lot of technical "know-how", so take the above in that context.
Date published: 2019-05-19
Rated 4 out of 5 by from The lecturer is good and it’s a helpful review Cosmology is my hobby and I’ve written a paper called A Theory of Everything. So I bought the course. It didn’t get me to refine my theory but it did put it into context.
Date published: 2019-05-14
Rated 5 out of 5 by from Just plain interesting ! Some of the content was a little deep for me, but the lecturer managed to explain it in terms I could grasp. I absolutely would recommend people not to be put off by any of the course content, this lecturer is fantastic.
Date published: 2019-04-28
Rated 5 out of 5 by from The Theory of Everythig, Don Lincoln This is the best lecture series I have viewed so far. Don Lincoln is such a great speaker with clear and easy to understand terms and graphics. He really knows the subject, quantum theory and relativity, and is relaxed and precise throughout his lectures. I highly recommend this edition.
Date published: 2019-04-09
  • y_2019, m_6, d_16, h_8
  • bvseo_bulk, prod_bvrr, vn_bulk_2.0.12
  • cp_1, bvpage1
  • co_hasreviews, tv_9, tr_142
  • loc_en_US, sid_1318, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.0
  • CLOUD, getContent, 43.89ms
  • REVIEWS, PRODUCT

Questions & Answers

Customers Who Bought This Course Also Bought